资源类型

期刊论文 41

年份

2023 3

2022 3

2021 4

2020 2

2019 2

2018 4

2017 4

2016 1

2015 3

2014 3

2012 1

2011 1

2008 2

2007 2

2006 1

2002 1

2001 1

2000 2

展开 ︾

关键词

HSLC钢 1

优生健康检查 1

位错增殖 1

关键因子;非线性计数系统;广义高斯过程回归;敏感性分析;钢铁轧制过程 1

冷轧基板 1

净形铸造 1

凝固过程 1

出生缺陷 1

化工合成 1

单晶硅 1

单晶种铸造 1

原位统计分布分析表征技术 1

变形机制 1

基于图的方法;多标签分类;手机屏缺陷;神经网络 1

多晶成核 1

多晶硅 1

大块非晶合金,模型铸造,金属材料,结构弛豫 1

安全保障对策 1

强化 1

展开 ︾

检索范围:

排序: 展示方式:

Determining casting defects in near-net shape casting aluminum parts by computed tomography

Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 48-52 doi: 10.1007/s11465-018-0493-y

摘要:

Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

关键词: near-net shape casting     aluminum parts     casting defects     low pressure die casting     die casting     semi-solid casting     computed tomography    

连续铸钢前沿技术的工程化

干勇

《中国工程科学》 2002年 第4卷 第9期   页码 12-18

摘要:

论述了具有我国自主知识产权的高效连铸和薄板坯连铸工程化关键技术的特点;介绍了连续铸钢领域轻压下、液压非正弦振动、电磁连铸等前沿技术的开发现状;阐述了传统连铸技术超高效率、高品质化及近终形连铸、电磁连铸开发的研发方向。

关键词: 连续铸钢     高效连铸     薄板坯连铸     轻压下     电磁连铸    

Tomographic diagnosis of defects in hydraulic concrete structure

ZHAO Mingjie, XU Xibin

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 226-232 doi: 10.1007/s11709-008-0027-5

摘要: The ultrasonic tomographic technology is applied to diagnose the defects in hydraulic concrete structure. In order to improve the precision of diagnoses, the wavelet transformation is used in the processing of ultrasonic signals. The influences of water, scale and orientation of defect, processing methods and theoretical model on image resolution are investigated. The experimental results indicate that the result of the tomographic diagnosis of a single defect is sensitive and the boundary can be clearly determined. However, the image resolution of multiple defects is not satisfactory. The water content and scale of a defect may significantly affect the imaging resolution. Defects with the orientation perpendicular to the direction of the diagnosis may have higher precision in diagnosing. The wavelet transformation technology can elevate the imaging resolution. The applied calculation model plays a very important role in improving the accuracy of detection.

关键词: satisfactory     processing     orientation     tomographic diagnosis     orientation perpendicular    

Novel casting processes for single-crystal turbine blades of superalloys

Dexin MA

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 3-16 doi: 10.1007/s11465-018-0475-0

摘要:

This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thin-shell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.

关键词: superalloy     investment casting     Bridgman process     directional solidification     single crystal     turbine blade    

Automated classification of civil structure defects based on convolutional neural network

Pierclaudio SAVINO, Francesco TONDOLO

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 305-317 doi: 10.1007/s11709-021-0725-9

摘要: Today, the most commonly used civil infrastructure inspection method is based on a visual assessment conducted by certified inspectors following prescribed protocols. However, the increase in aggressive environmental and load conditions, coupled with the achievement of many structures of the life-cycle end, has highlighted the need to automate damage identification and satisfy the number of structures that need to be inspected. To overcome this challenge, this paper presents a method for automating concrete damage classification using a deep convolutional neural network. The convolutional neural network was designed after an experimental investigation of a wide number of pretrained networks, applying the transfer-learning technique. Training and validation were conducted using a database built with 1352 images balanced between “undamaged”, “cracked”, and “delaminated” concrete surfaces. To increase the network robustness compared to images in real-world situations, different image configurations have been collected from the Internet and on-field bridge inspections. The GoogLeNet model, with the highest validation accuracy of approximately 94%, was selected as the most suitable network for concrete damage classification. The results confirm that the proposed model can correctly classify images from real concrete surfaces of bridges, tunnels, and pavement, resulting in an effective alternative to the current visual inspection techniques.

关键词: concrete structure     infrastructures     visual inspection     convolutional neural network     artificial intelligence    

Novel technologies for the lost foam casting process

Wenming JIANG, Zitian FAN

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 37-47 doi: 10.1007/s11465-018-0473-2

摘要:

Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting techno- logy; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thin-wall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

关键词: LFC under vacuum and low pressure     vibration solidification     pressure solidification     expendable shell casting     bimetallic castings    

Hybrid forming mechanism of patternless casting and laser cladding

Zhongde SHAN, Fuzhen SUN, Yang LIU

《机械工程前沿(英文)》 2019年 第14卷 第4期   页码 393-401 doi: 10.1007/s11465-019-0550-1

摘要: In accordance with the requirement of manufacturing dies quickly and economically, a hybrid forming method of stamping dies for automobile panels is proposed. The method combines digital patternless casting and high-power laser cladding. An experimental study is conducted on the hybrid forming process and its trial production and application in the manufacturing of stamping dies for typical panels. Results prove that the laser cladding layer exceeds HRC60 (Rockwell hardness) and thus meets the production efficiency requirement of automobile dies. The rate of defects is well controlled. Compared with traditional technology, this technology has remarkable advantages and advancement.

关键词: patternless casting     laser cladding     hybrid forming     rapid tooling    

Numerical investigation of the influence of casting techniques on fiber orientation distribution in ECC

Chung Nguyen VAN; Hai TRAN THANH; Thuc Nhu NGUYEN; Jianchun LI

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1424-1435 doi: 10.1007/s11709-022-0870-9

摘要: Engineered cementitious composites (ECC), also known as bendable concrete, were developed based on engineering the interactions between fibers and cementitious matrix. The orientation of fibers, in this regard, is one of the major factors influencing the ductile behavior of this material. In this study, fiber orientation distributions in ECC beams influenced by different casting techniques are evaluated via numerical modeling of the casting process. Two casting directions and two casting positions of the funnel outlet with beam specimens are modeled using a particle-based smoothed particle hydrodynamics (SPH) method. In this SPH approach, fresh mortar and fiber are discretized by separated mortar and fiber particles, which smoothly interact in the computational domain of SPH. The movement of fiber particles is monitored during the casting simulation. Then, the fiber orientations at different sections of specimens are determined after the fresh ECC stops flowing in the formwork. The simulation results show a significant impact of the casting direction on fiber orientation distributions along the longitudinal wall of beams, which eventually influence the flexural strength of beams. In addition, casting positions show negligible influences on the orientation distribution of fibers in the short ECC beam, except under the pouring position.

关键词: ECC     fiber orientation distribution     casting direction     casting position    

An energy consumption prediction approach of die casting machines driven by product parameters

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 868-886 doi: 10.1007/s11465-021-0656-0

摘要: Die casting machines, which are the core equipment of the machinery manufacturing industry, consume great amounts of energy. The energy consumption prediction of die casting machines can support energy consumption quota, process parameter energy-saving optimization, energy-saving design, and energy efficiency evaluation; thus, it is of great significance for Industry 4.0 and green manufacturing. Nevertheless, due to the uncertainty and complexity of the energy consumption in die casting machines, there is still a lack of an approach for energy consumption prediction that can provide support for process parameter optimization and product design taking energy efficiency into consideration. To fill this gap, this paper proposes an energy consumption prediction approach for die casting machines driven by product parameters. Firstly, the system boundary of energy consumption prediction is defined, and subsequently, based on the energy consumption characteristics analysis, a theoretical energy consumption model is established. Consequently, a systematic energy consumption prediction approach for die casting machines, involving product, die, equipment, and process parameters, is proposed. Finally, the feasibility and reliability of the proposed energy consumption prediction approach are verified with the help of three die casting machines and six types of products. The results show that the prediction accuracy of production time and energy consumption reached 91.64% and 85.55%, respectively. Overall, the proposed approach can be used for the energy consumption prediction of different die casting machines with different products.

关键词: die casting machine     energy consumption prediction     product parameters    

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1755-1764 doi: 10.1007/s11705-023-2318-8

摘要: Owing to the complexity of electron transfer pathways, the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn–air batteries. In this effort, metal nanoparticles (Co, Ni, Fe, etc.) encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials, which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects. The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles (Co@NC-500) exhibits enhanced catalytic activity toward oxygen evolution reaction, with a low overpotential of 350 mV at the current density of 10 mA·cm–2. Furthermore, the Zn–air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm–2, indicating considerable practical application potential.

关键词: oxygen evolution reaction     porous carbon nanosheets     Co nanoparticles     edge-induced topological defects     Zn–air batteries    

Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size

Yangsu XIE, Bowen ZHU, Jing LIU, Zaoli XU, Xinwei WANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 143-157 doi: 10.1007/s11708-018-0520-z

摘要: To understand the relation between different nanostructures and thermal properties, a simple yet effective model is in demand for characterizing the underlying phonons and electrons scattering mechanisms. Herein, we make a systematic review on the newly developed thermal reffusivity theory. Like electrical resistivity which has been historically used as a theory for analyzing structural domain size and defect levels of metals, the thermal reffusivity can also uncover phonon behavior, structure defects and domain size of materials. We highlight that this new theory can be used for not only metals, but also nonmetals, even for amorphous materials. From the thermal reffusivity against temperature curves, the Debye temperature of the material and the ideal thermal diffusivity of single perfect crystal can be evaluated. From the residual thermal reffusivity at the 0 K limit, the structural thermal domain (STD) size of crystalline and amorphous materials can be obtained. The difference of white hair and normal black hair from heat conduction perspective is reported for the first time. Loss of melanin results in a worse thermal protection and a larger STD size in the white hair. By reviewing the different variation of thermal reffusivity against decreasing temperature profiles, we conclude that they reflected the structural connection in the materials. Ultimately, the future application of thermal reffusivity theory in studying 2D materials and amorphous materials is discussed.

关键词: thermal reffusivity theory     phonon behavior     structure defects     structural thermal domain (STD) size     2D material     amorphous material    

Thermal deflection analysis of the solidified shell in continuous casting of slab

LIU Hongzhao, WANG Zhongmin

《机械工程前沿(英文)》 2007年 第2卷 第2期   页码 175-179 doi: 10.1007/s11465-007-0029-3

摘要: The thermal deformation problem in the continuous casting of a slab subjected to thermal loading because of the temperature gradient along the solidified shell thickness is investigated. On the basis of the reciprocal theorem of work or Betti-Maxwell s reciprocal theorem and the superposition principle, the deflection expressions for a rectangular plate with the two opposite edges simply supported, and the other two opposite edges clamped under the action of the uniformly distributed load and nonuniform temperature field are derived respectively. The meaning of each term in the deflection expression obtained by the reciprocal theorem of work is explained. Then the practical example is given to calculate the thermal deformation and the bulging deformation of the solidified shell under three tension speeds. This research is useful for analyzing the bulging deformation in the continuous casting of a slab under the static pressure of the molten steel and the thermal loading because of the temperature gradient along the solidified shell thickness.

关键词: s reciprocal     loading     deflection expression     reciprocal     opposite    

Ultrasonic measurement of tie-bar stress for die-casting machine

《机械工程前沿(英文)》 doi: 10.1007/s11465-021-0663-1

铸件凝固过程的宏观及微观模拟仿真研究进展

柳百成

《中国工程科学》 2000年 第2卷 第9期   页码 29-37

摘要:

面向市场经济,迎接全球化竞争的挑战,为国民经济的发展作贡献,就要十分重视制造业特别是铸造行业的发展。但是,我国铸造行业与国外相比有很大差距,它制约着国民经济的发展。世界各国在铸造成形加工技术的发展趋势方面,认识是一致的,即:一是大型工程中特大型铸件的关键铸造技术;二是向精确成形技术方向发展;三是用计算机模拟仿真逐步代替传统的经验性研究方法。铸造过程计算机模拟仿真是改造传统铸造产业的必由之路,是当今世界各国专家学者关注的热点。铸造充型凝固过程的数值模拟可以帮助工程技术.人员优化工艺设计,缩短试制周期、降低生产成本、确保铸件质量,已成为铸造领域最热门的研究课题之一。目前,凝固过程的流场、温度场数值模拟及缩孔缩松预测已应用于实际生产,应力分析、微观组织模拟等方面的基础研究及实用化进程都取得了很大进展。

关键词: 铸造     凝固过程     模拟仿真     净形铸造    

Detection of solder bump defects on a flip chip using vibration analysis

Junchao LIU, Tielin SHI, Qi XIA, Guanglan LIAO

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 29-37 doi: 10.1007/s11465-012-0314-7

摘要:

Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.

关键词: flip chip     defect detection     ultrasonic excitation     vibration analysis    

标题 作者 时间 类型 操作

Determining casting defects in near-net shape casting aluminum parts by computed tomography

Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER

期刊论文

连续铸钢前沿技术的工程化

干勇

期刊论文

Tomographic diagnosis of defects in hydraulic concrete structure

ZHAO Mingjie, XU Xibin

期刊论文

Novel casting processes for single-crystal turbine blades of superalloys

Dexin MA

期刊论文

Automated classification of civil structure defects based on convolutional neural network

Pierclaudio SAVINO, Francesco TONDOLO

期刊论文

Novel technologies for the lost foam casting process

Wenming JIANG, Zitian FAN

期刊论文

Hybrid forming mechanism of patternless casting and laser cladding

Zhongde SHAN, Fuzhen SUN, Yang LIU

期刊论文

Numerical investigation of the influence of casting techniques on fiber orientation distribution in ECC

Chung Nguyen VAN; Hai TRAN THANH; Thuc Nhu NGUYEN; Jianchun LI

期刊论文

An energy consumption prediction approach of die casting machines driven by product parameters

期刊论文

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

期刊论文

Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size

Yangsu XIE, Bowen ZHU, Jing LIU, Zaoli XU, Xinwei WANG

期刊论文

Thermal deflection analysis of the solidified shell in continuous casting of slab

LIU Hongzhao, WANG Zhongmin

期刊论文

Ultrasonic measurement of tie-bar stress for die-casting machine

期刊论文

铸件凝固过程的宏观及微观模拟仿真研究进展

柳百成

期刊论文

Detection of solder bump defects on a flip chip using vibration analysis

Junchao LIU, Tielin SHI, Qi XIA, Guanglan LIAO

期刊论文